self._calibrator.collect_data(calibration_dataset) / ValueError: a tensor of shape [1, 3, 640, 640] (float32) is invalid for input of shape [8, 3, 640, 640] (float32)
self._calibrator.collect_data(calibration_dataset) / ValueError: expected 1 input(s) but got 8
#for data in tqdm(calib_data, desc="calibration"):
for idx in tqdm(range(0, len(calib_data), bs)):
imgs = []
for b in range(bs):
if idx + b >= len(calib_data):
break
data = calib_data[idx+b]
if not (data.endswith(".png") or data.endswith(".jpg")):
continue
imgs.append(cv2.imread(data))
if len(imgs) != bs:
continue
input_, _ = preprocess(imgs, new_shape=(int(input_shape[2:][0]),int(input_shape[2:][1])), tensor_type = "float32")
calibrator.collect_data([[input_]])